
How to be an Efficient Researcher

Dylan S. Shah1

Abstract— This document gives my advice on how to ef-
ficiently conduct research involving already-purchased elec-
tronics hardware. The research approach advocated here can
be applied in other areas of research (“systems”). Sometimes
it makes sense to skip or return to steps, so it should be
drawn as a highly-connected undirected graph. My philosophy
shares many values and characteristics with Agile project
management, especially Scrum, but I do not ascribe rigidly to
any formal framework. Note that this is provided as-is, with no
claims of optimality or assumption of liability. It’s clearly not
a professional business-school document, just one researcher’s
views.

Main steps: 1) Know your goals. 2) Draw a visual represent-
ing your ideal system. 3) Refine your plan with a trusted col-
league. 4) Build up your system from “easily”-understandable
chunks. 5) Refine your final system with your colleague(s), until
you met your goals. Effective communication will improve your
enjoyment and efficiency of research.

CONTENTS

I Efficient Programming (Read this First) 1

II Other Coding Tips 1

III Git 2

IV Coding Languages 2

V Debugging 2

VI Reading Papers 2

VII Writing Papers 2

VIII Reviewing Papers 3

References 3

S1 Quotes / Maxims 4

S2 Presentation feedback 4

S3 Paper feedback 4

S4 Misc Notes 5

S5 Final Submission Checklist 5

I. EFFICIENT PROGRAMMING (READ THIS FIRST)

First, a procedure for writing code efficiently. orange
text is an example 1-program project; more complicated
programs might require multiple tiers of purposes, design
requirements, psuedocodes, etc.

1) “Know thyself” - State your:
• Project Purpose. Change outputs of 8-ch board

between GND and +VDD upon command

*Contact Info: dylan.shah.50@gmail.com and
dylanshah.com.

• Design Requirements. Be the size of a cellphone
(or smaller), and be I2C-ready

• Desired Features. Provide automatic shutoff when
current exceeds 1A

2) Draw your program, including flow (flow of infor-
mation, power, etc.) and/or interactions - between
hardware components, as well as between significant
software components/objects/functions/programs.
Arduino States−−−→ PIC µC States−−−→ FET Current−−−−→ Device

3) Write Psuedocode
PIC µC Firmware:
1. Receive command
2. Set States

4) Review your psuedocode (in M.E. this is a “design
review”) with a trusted coworker (labmate, boss, etc.).

5) Repeat steps 1-4 until you and your coworker agree
on the plan.

6) Write skeleton script and run it. (The minimal program
which can run in your PCB and/or IDE, such as the
program shown when you open the Arduino IDE.)

7) Make minimal “testing driver” to test basic PCB func-
tionality (examples: “Blink”, “capSensorDriver”). Save
this in a location where you won’t lose it.

8) Add functionality in minimal increments, testing each
step. (Also make a git commit after each significant
functionality addition.)

9) Code review with coworker. This serves three pur-
poses: 1) Organizing your work. 2) Catching bugs or
inefficencies. 3) Improving collaboration (as well as
code-sharing to future users of your project).

10) Repeat useful steps until you met requirements.
11) Optionally, optimize your code for computational effi-

ciency
12) Show your code to a labmate, to ensure readability and

verify that you have proper documentation.

II. OTHER CODING TIPS

C.f. “Best Practices for Scientific Computing” by Wilson
(2014) [1], “MATLAB Programming Style Guidelines” [2],
and the Google Python Style Guide [3].

1) Write programs for people, not computers.
• Use meaningful function/variable names
• Directly in the document (if possible), con-

cisely document: Why & how, not what; purpose
& design, not mechanics. Every “major” func-
tion or action needs a comment & whitespace
at a minimum.

2) Use version control (git).

Efficient Research c© Dylan Shah 2019-2024. All Rights Reserved. 1

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Undirected_graph
https://www.atlassian.com/agile/project-management#:~:text=What%20is%20agile%20project%20management,customer%20feedback%20with%20every%20iteration.
https://www.atlassian.com/agile/project-management#:~:text=What%20is%20agile%20project%20management,customer%20feedback%20with%20every%20iteration.
https://www.atlassian.com/agile/scrum


3) Use high-level languages (Ex: Python vs. C).
4) Use a single full-feature text editor for all editing, and

learn keyboard shortcuts. My preference, first to last:
Atom or Sublime; Notepad++; VIM in terminal.

5) Code in Linux when you’re programming for more
than 3̃0 minutes. It has many built-in features that
make coding efficient and enjoyable. (Exception: some
programs, such as MATLAB, have better Windows
implementations.)

III. GIT

Git is an efficient way of tracking file versions (drawn in
Fig. 1; see [4] for details). It is a command-line program
(or you can use Git Desktop) that can turn almost any
folder into a tracked folder. GitHub stores these folders
online. Somebody pushing to GitHub CANNOT affect your
local files unless you let it, typically with git pull.
Many programs have Git integrations, including Sublime
and “Sublime Merge” (has great graphical tools), Atom, and
MPLAB. StackExchange and ChatGPT have answers to most
situation-specific questions.

Basic workflow:
• Optionally pull changes from remote. git pull
• Edit files to complete a significant feature or bugfix
• Add files to index. git add .
• “Commit” your index to commit history. git commit
-m ‘‘Added error checking’’

• (Push changes to remote. git push)

IV. CODING LANGUAGES

Here, level means “level of abstraction”. High-level code
requires fewer lines of code to achieve a given function and
is typically easier to read and write. Bold languages are
essential for modern engineers.

Language Purpose “Level”
Python General High

C++ (Arduino) Fast, general Medium
MATLAB Plotting High
Assembly Fastest Low

R Statistics, Plotting High
.md, LaTeX, HTML Documentation High

V. DEBUGGING

Debugging is an art. Over time, you will be able to skip
and re-order these steps. Retest at various stages. Important:
unplug all energy supplies (electricity, pressurized air, etc.)
prior to changing or inspecting wiring, or reorienting parts.
Follow lab safety guidelines. Add fuses or breakers.

1) Test your system with the simplest known software
that previously worked. (I.e., your testing driver
from earlier.) If it runs properly, you have a software
issue: use a code compare tool (“Code Compare” in
Windows; git diff in any OS) to see changes made
between your simple code and the problematic code,
and skip to the final step below.

2) Draw a high-level schematic of your ideal circuit
(Arduino, PC, Pressure Regulators, etc.).

3) Make sure all your real system’s grounds (GND) are
properly connected.

4) Make sure all power supplies are: connected where
they’re supposed to be; set to the proper voltage (and
max. amps. allowed).

5) Make sure all communication wires (I2C, USB, etc.)
are connected properly and securely.

6) Remove components that were added since the most
recent “previously working” configuration.

7) Remove components until you get to a configura-
tion that can run simple code (your testing driver).
Add components (and code) incrementally so you can
effectively verify the operation of each component
individually.

8) Verify potentially problematic components with a
simple circuit which is known to work. Ex: test a
pressure regulator (PR) by using the pressureRegula-
torDriver on an Arduino, connected to one working
PR. You should hear the working PR tick periodically.
Add the questionable PR and observe.

VI. READING PAPERS

For most papers, everything you need to learn can be
presented in a single paper (front and back) of handwritten
notes on line-free paper. Take notes for complicated papers;
otherwise, highlighting the PDF is typically easier to manage.
Use a reference manager such as Zotero. I’ll abbreviate a
“well-written, significant paper” (see [5], [6]) as a “WWSP”.

1) Skim the paper: abstract, intro, figures, tables, key
theorems, and conclusion. 15-30 minutes

2) Decide which sections are most relevant to you.
3) Read the full paper, taking notes on: assumptions,

experimental flaws (and their consequences), key
formulas (quasi-independently derive all formulas
found in the sections identified previously), and re-
sults/conclusions. Don’t spend more than 2̃0 minutes
on a single topic or formula: add it to a “TODO” sticky
note or paper. Varies. A WWSP might take a full day.

4) Learn: read the SI & related work, Wiki pages, discuss
with labmates, etc., addressing your TODO list. Varies.
A WWSP might deserve a few days.

5) Organize your notes so you can quickly remem-
ber/locate key details in the future.

VII. WRITING PAPERS

See [7], [8]. Basically, draw your paper by hand: write bul-
let points for your main claims and differentiation from prior
art, sketch figures, make blank data tables, write experimental
procedures, draw the data-flow and/or circuit. If significant,
list necessary resources, and estimate the project timeline.
For a conference article, aim for 1 paper front-and-back; for
a journal paper maybe 3 papers front-and-back. While this
section was written with academic papers in mind, the basic
process generalizes well to most types of reports.

Efficient Research c© Dylan Shah 2019-2024. All Rights Reserved. 2



Fig. 1. A graphical explanation of git and GitHub. Black text are example commands which pull information from their source to the arrow-tip.

Then, complete the proposed research, continuously up-
dating your outline (switching to Overleaf at some point).
Finally, process all data, collect images, draw schematics (in
Inkscape or Adobe Illustrator... NOT PowerPoint), and write
the full paper in rough-draft form. Properly frame your work
and explain the full story. Coherency and context go a long
way to increasing the readability and impact of the work [8].

Show the first draft to your project PI and co-authors in
person, until you agree on the overall structure. Once the
structure is set, refine the paper to be presentable. Send a
presentable draft to co-authors and revise. Once you agree
on the draft, send to at least one “senior” writer in the group
(a prolific 2nd-year, a senior grad student, etc.). Once your
co-authors agree on the revision, send to the project PI. As
you get closer to submission, begin drafting a cover letter
(using project PI’s template .tex file).

Notes for revisions: minimize the amount of quotes repro-
duced in the Response to Reviewers. Write a cover letter for
the revision, if you’re submitting to a “high-impact” journal.
Show PI the revision in person for a minute to make sure
you’re agreeing on the overall structure of the changes. Then
treat the revision and cover letter like a new submission (see
previous paragraph).

A checklist to look through during the submission process
is added as an appendix.

VIII. REVIEWING PAPERS

This is my process of reviewing a paper, after I already
accepted the invitation. See [9] for opinions on how to decide
whether to accept an invitation. I read the paper’s PDF in
the following order, taking notes on a Markdown file and
highlighting the PDF:

1) Abstract: look for coherency, relevance to the field,
and a concise summary of their claims, methods,
evidence, and conclusions.

2) Figures & Tables: verify that the presentation is
clear and well-captioned. Figure quality (both technical

content and organization) highly correlated with the
rest of the paper. Good papers (some theory papers
are exceptions) can be 80% understood just through
the figures.

3) Formulas: skim the formulas to get a overview of the
theory they are operating under. Typically the theory
will be used to justify their broader claims.

4) Complete read-through: read the entire paper, word
for word.

5) Math Check-up: verify all derivations and equations
by hand, with minimal hints from the paper.

6) Convert all comments to text. I use a “.md” file, be-
cause it can be color-coded in Sublime. The publisher’s
website will present the authors with the plain text. My
sections are: “To the Editors” (Confidential comments,
as a super-condensed gut feel. Optional.), “General
Comments”, “Detailed Comments”, “Figures”, and
“Supplemental”.

REFERENCES

[1] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T.
Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley,
B. Waugh, E. P. White, and P. Wilson, “Best Practices for Scientific
Computing,” PLOS Biology, vol. 12, p. e1001745, Jan. 2014.

[2] R. Johnson, “MATLAB Style Guidelines 2.0,” 2014.
[3] Google, “Google Python Style Guide,” 2019.
[4] R. E. Silverman, Git Pocket Guide: A Working Introduction. O’Reilly

Media, Inc., 2013.
[5] J. Hiller and H. Lipson, “Dynamic Simulation of Soft Multimaterial

3d-Printed Objects,” Soft Robotics, vol. 1, pp. 88–101, Feb. 2014.
[6] W. M. v. Rees, E. A.Matsumoto, A. SydneyGladman, J. A.Lewis, and

L. Mahadevan, “Mechanics of biomimetic 4d printed structures,” Soft
Matter, vol. 14, no. 43, pp. 8771–8779, 2018.

[7] G. M. Whitesides, “Whitesides’ Group: Writing a Paper,” Advanced
Materials, vol. 16, pp. 1375–1377, Aug. 2004.

[8] J. Strassmann, “Why this editor wont be sending your paper out for
further review at PNAS,” Apr. 2015.

[9] E. Pain, 2016, and E. Pain, “How to review a paper,” Sept. 2016.
[10] “Science Robotics, Information for Authors-Research Articles,” Feb.

2018.
[11] “Effective Writing | Learn Science at Scitable.”

Efficient Research c© Dylan Shah 2019-2024. All Rights Reserved. 3



S1. QUOTES / MAXIMS

These quotes are concise expressions of what I feel are
generally-applicable truths. The explanations show how I
interpret them in the context of engineering research.

1) “Solvitur ambulando” — Latin. Solve by walking:
if you are stuck on a difficult problem, take a walk
outside and return to the problem.

2) “Do not solve equations, analyze them” — Yale
professor Madhusudhan Venkadesan. Presumably ref-
erencing L. Mahadevan. You can typically learn more
by looking for the relation and effects of key variables
than by treating equations as math that you need to
“solve”.

3) “You will not get what you deserve. You will
get what you negotiate.” — author Chester Karrass.
Remember this when applying for jobs, grants, fellow-
ships.

4) “Never eat alone” — some guy on a cruise. Most
networking and great ideas start over meals and breaks.
(Follow-up calls, brainstorming, etc. are second steps.)

5) “Everything should be made as simple as possible,
but not simpler.” — Albert Einstein. A related idea
is that you only truly understand something when you
can show somebody else that it is simple (a flowchart,
equation, or diagram is typically necessary).

6) “If it feels difficult, you’re probably doing it wrong.”
— Dylan. IK, it’s weird to quote yourself. However,
I can’t find an equivalent quote online, but live by
this. Once you know how to do something, even if it’s
complicated and difficult, you should be able to find
a way to make it not feel difficult. Otherwise, you’re
probably in the wrong line of work.

S2. PRESENTATION FEEDBACK

1) Start with a story, fact, or question (difficult in aca-
demic presentations).

2) Put a bar on the bottom darkly (black) showing which
section you’re in, and show other sections in a faded
(gray) font.

3) Add slide numbers.
4) Make the photos higher-resolution. Also, for that snip

of the equation from XYZ et al., zoom in more before
taking the snip. Alternately, write the equation in
PowerPoint’s equation writer.

5) Provide more context in the introduction. Why does
anybody in the room care about the work?

6) Have more concise text.
7) Sections should typically be roughly:

• Motivation (including prior work as a subset)
• Basic principles of your technology
• Visual summary of your work
• Important details (theory, experiments, PCB’s)
• Interesting results (successes AND useful or in-

structive failures)
• Conclusion
• Thank you and questions

8) Use a consistent slide format. I prefer a simple tem-
plate, such as the ones used in the Presentations section
on my website.

9) I was lost in the theory section. Analyze the importance
of only the most significant equations.

10) Use language and a level of detail that is appropriate
for your audience.

S3. PAPER FEEDBACK

1) Abstract should be a single paragraph, approximately
200 words, written in plain language. Do not include
citations or undefined abbreviations in the abstract. It
should include [10]:

• An opening sentence that states the ques-
tion/problem addressed by the research

• Enough background content to give context to the
study

• A brief statement of primary results
• A short concluding sentence.

2) Provide more context in the introduction. Why does
anybody care about the work? Intro should include:

• An opening sentence that states the ques-
tion/problem addressed by the research. Continue
with related potential benefits of solving the prob-
lem, and/or how it is currently solved.

• Enough background content to give context to the
study, including weaknesses/gaps in prior research.
Typically 1-2 paragraphs.

• A brief statement of your primary results. Typi-
cally one paragraph.

• A short concluding sentence that inspires readers.
3) First figure should be a summary figure that clearly

shows the advance presented in the paper
4) For a high-impact paper (in a top-tier jour-

nal/conference), sections should typically be (theory
may be interspersed, depending on its relative signifi-
cance):

• Introduction (including prior work as a subset)
• Results
• Discussion
• Conclusion
• Materials and Methods
• Supplementary Information

5) Abstract, intro, and final section (discus-
sion/conclusion) should follow a similar format
and flow.

6) Have more concise text.
7) What do you mean when you say “this”?
8) Use terms consistently. Ex.: stiffness vs. rigidity;

shape-changing vs. shape changing vs. shape change.
9) I was lost in the theory section. Analyze the importance

of only the most significant equations, and remove
other equations and discussions.

10) Only introduce abbreviations if that term is either used
several times (> 5) or in several sections (> 3).

Efficient Research c© Dylan Shah 2019-2024. All Rights Reserved. 4

https://www.dylanshah.com/#publications


11) Use language and a level of detail that is appropriate
for your audience.

12) Tenses [11]:
• Past tense = what happened in the past: what you

did, what someone reported, what happened in an
experiment, and so on.

• Present tense = general truths, such as conclusions
(drawn by you or by others) and atemporal facts
(including information about what the paper does
or covers).

• Future tense = perspectives: what you will do in
the coming months or years.

• Most of your sentences will be in the past tense,
some will be in the present tense, and very few, if
any, will be in the future tense.

13) Use consistent, SI-ish units. Spaces between numbers
and units (exception: percent%, and degree◦).

S4. MISC NOTES

Compose vs. comprise link. Comprise: include or contain.
Compose: to be or constitute part or element of. Use com-
posed of. Not comprised of. Comprising == non-exhaustive
list. Composed =̃ Consisting == exhaustive list. Examples:
The whole comprises the elements or parts. The elements or
parts compose the whole.

S5. FINAL SUBMISSION CHECKLIST

Check your venue’s submission guidelines. Some of the
items below will not be necessary. Roughly in the order you
should complete them.

1) Get the submission link (if it’s a special issue)
2) Write cover letter in .tex, give to your PI
3) Polish the video. Add a title card @ beginning and end
4) Write text descriptions of the supplementary videos
5) Review verb tenses, units
6) Print the document and give to your PI
7) Split paper into main text and SI
8) Render videos to the appropriate filesize
9) Make sure you fit in the limits (page length, number

of references, number of figures)
10) Review the editor’s email. Sometimes they have other

requirements, like linking the corresponding author’s
ORCID or adhering to specific journal formatting rules.

11) Submit
12) Move everything to our org’s group drive

Efficient Research c© Dylan Shah 2019-2024. All Rights Reserved. 5

https://hutchinsonip.com/2018/06/25/patentese-comprising-vs-consisting/

	Efficient Programming (Read this First)
	Other Coding Tips
	Git
	Coding Languages
	Debugging
	Reading Papers
	Writing Papers
	Reviewing Papers
	References
	Quotes / Maxims
	Presentation feedback
	Paper feedback
	Misc Notes
	Final Submission Checklist

